Damit reicht das Spektrum der grünen LED vom roten bis in den blauen Bereich hinein. Das bestätigen auch unsere Beobachtungen am Gitter.
Wir berechnen jetzt die zugehörigen Energien und daraus die Spannungen an der LED.
{\large\left. \begin{array}{l}E=h\cdot f\\f=\frac{c}{\lambda }\end{array} \right\}E=\frac{h\cdot c}{\lambda } }
Für die langwellige Grenze:
{\large \begin{array}{l}E(600\,nm)=\frac{4,136\cdot {{10}^{-15}}\,eVs\cdot 3,0\cdot {{10}^{8}}\,m}{600\cdot {{10}^{-9}}\,m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,s}\\\\E(600\,nm)=\,2,07\,eV\end{array} }
Für die maximale Intensität:
{\large\begin{array}{l}E(560\,nm)=\frac{4,136\cdot {{10}^{-15}}\,eVs\cdot 3,0\cdot {{10}^{8}}\,m}{560\cdot {{10}^{-9}}\,m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,s}\\\\E(560\,nm)=\,2,22\,eV\end{array} }